Дата публикации: 05 июля 2023
Химики Санкт-Петербургского государственного университета применили методы работы с большими данными для предсказания фотокаталитических свойств нанолистов оксида цинка — наноструктурированного материала, состоящего из частиц в форме тонких листов. Исследование позволит решить вопрос безотходной утилизации красителей, которые широко используются как в лакокрасочной, так и в текстильной промышленности, а также ряд других задач. Исследование опубликовано в научном журнале Applied Surface Science, освещающем вопросы свойств поверхностей и наноструктур, а также их применения.
Разработка новых материалов — важная задача современной науки, поскольку такие материалы позволяют уменьшить вредные выбросы в биосферу и снизить загрязнение окружающей среды. Процесс разработки новых материалов сложный и трудозатратный, так как включает в себя несколько этапов, каждый из которых занимает большое количество времени и не всегда может привести к желаемому результату. Так, химики должны сначала синтезировать материал, затем изучить его свойства и после провести апробацию, чтобы понять, справится ли разработанный материал с конкретной задачей. Упростить и ускорить разработку новых материалов можно, если заранее, еще до синтеза вещества, удастся понять, какой материал с точки зрения его свойств будет наиболее эффективен для решения той или иной задачи.
Ученые Санкт-Петербургского государственного университета разработали модель для предсказания фотокаталитических свойств нанолистов оксида цинка, что открывает широкие перспективы разработки наноматериалов с заданными свойствами, которые могут быть использованы, например, для очистки сточных вод от красителей.
В качестве фотокатализатора, то есть материала, способного разлагать органические красители под действием света, исследователи СПбГУ использовали нанолисты оксида цинка — этот материал нетоксичен и доступен для получения. Наноразмерные частицы обладают несравнимо большей площадью поверхности по сравнению с привычным для нас «бруском» какого-либо материала, поэтому разложение красителя происходит быстрее и эффективнее. Именно переход в наномасштаб открывает уникальные свойства многих веществ, в том числе за счет дефектов структуры.
«Представьте себе собранный кубик Рубика с правильно расположенными цветами. А теперь представьте, что в нем не только перепутаны цвета, но и отсутствуют некоторые детали. Казалось бы, что может быть хуже, но как ни парадоксально это звучит — именно эти "неидеальности" объясняют многие интересные свойства полупроводниковых наноматериалов, в том числе позволяя использовать нанолисты оксида цинка для решения экологических проблем», — сказал один из авторов исследования, лаборант-исследователь кафедры общей и неорганической химии СПбГУ Дмитрий Ткаченко.
Работа состояла из трех этапов: получение нанолистов оксида цинка и описание их свойств, рассмотрение процесса разложения красителя на молекулярном уровне и разработка модели для предсказания эффективности фотокатализатора. На данный момент до конца не ясно, как можно регулировать и определять количество дефектов (перепутанных и отсутствующих цветов в кубике Рубика) в нанообъектах. Однако, как отметила руководитель группы синтеза и исследования наночастиц и наноструктурированных материалов, доцент кафедры общей и неорганической химии СПбГУ Ольга Осмоловская, в ходе работы удалось не только найти способ регулирования количества таких дефектов в нанолистах, но и применить оригинальный подход для их определения. В результате химики СПбГУ смогли получить набор параметров, описывающих структуру и свойства нанолистов оксида цинка.
«Рассмотрение явлений и процессов в химии зачастую ассоциируется с проведением эксперимента в лабораторных условиях, что требует определенного уровня оснащенности и навыков. Мы же предлагаем использовать компьютерное моделирование, которое не только не требует наличия специального и дорогостоящего оборудования, но и обладает гораздо большими возможностями и гибкостью», — пояснил автор вычислительной части исследования, доцент кафедры физической химии СПбГУ Михаил Вознесенский.
В результате из всего набора параметров ученые смогли отобрать те, что оказывают наибольшее влияние на активность фотокатализатора. «В результате мы разработали уникальную модель для предсказания эффективности разложения красителей в присутствии нанолистов оксида цинка. С ее помощью любой ученый, не проводя эксперимент, сможет узнать, насколько будет эффективен фотокатализатор с теми или иными параметрами. Это, в свою очередь, открывает совершенно новые возможности в разработке наноматериалов с заданными свойствами», — пояснил автор хемометрической части исследования, профессор кафедры аналитической химии СПбГУ Дмитрий Кирсанов.
Междисциплинарное исследование, объединившее в себе методы неорганической, вычислительной, аналитической химии и материаловедения, проводилось на оборудовании Научного парка СПбГУ — ресурсных центров «Рентгенодифракционные методы исследования», «Инновационные технологии композитных наноматериалов», «Междисциплинарный ресурсный центр по направлению "Нанотехнологии"», «Методы анализа состава вещества», «Вычислительный центр», «Оптические и лазерные методы исследования» и «Физические методы исследования поверхности».
Для информации
Санкт-Петербургский государственный университет — первый университет России — был основан 28 января (8 февраля) 1724 года, когда Петр I издал указ об учреждении Университета и Российской академии наук. Сегодня СПбГУ — научный, образовательный и культурный центр мирового уровня. В 2024 году Санкт-Петербургский университет отметит свой 300-летний юбилей.
План мероприятий в рамках празднования юбилея Университета был утвержден на заседании оргкомитета по празднованию 300-летия СПбГУ, которое провел заместитель председателя Правительства РФ Дмитрий Чернышенко. Среди таких мероприятий — присвоение малой планете имени в честь СПбГУ, выпуск банковских карт со специальным дизайном, создание почтовых марок, посвященных истории первого университета России, брендирование самолета авиакомпании «Россия» и многое другое.